Robust (MD + ML) = Learned Mechanisms

Johannes Brustle LSE

Yang Cai Yale

Costis Daskalakis MIT

- 1. [BCD] Multi-Item Mechanisms without Item-Independence: Learnability via Robustness. (EC '20)
- 2. [CD] Recommender Systems meet Mechanism Design. (EC '22)

Motivation

what is this rock and how should I sell it

private value v

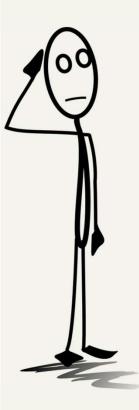
- How to sell an item to optimize revenue?
 - without information about the buyer's value, no meaningful optimization of revenue can be attained.
- Bayesian assumption: the seller knows a distribution F s.t. $v \sim F$.
 - Private value: We know F, but not the sampled value v.
 - Quasi-linear Utility: $v \cdot x p$ if wins the item with prob. x and pays price p.
- [Riley-Zeckhauser'81, Myerson'81]: The optimal mechanism is a take-it-or-leave-it offer of the item at price: $p^* \in \arg\max\{z \cdot (1 F(z))\}$.

what is this rock and how should I sell it?

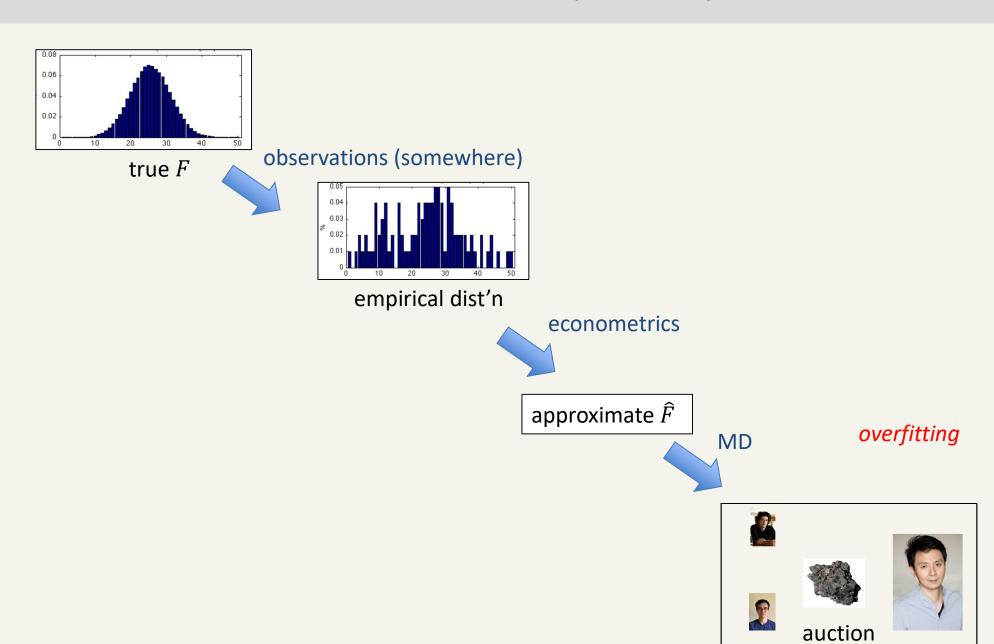
:

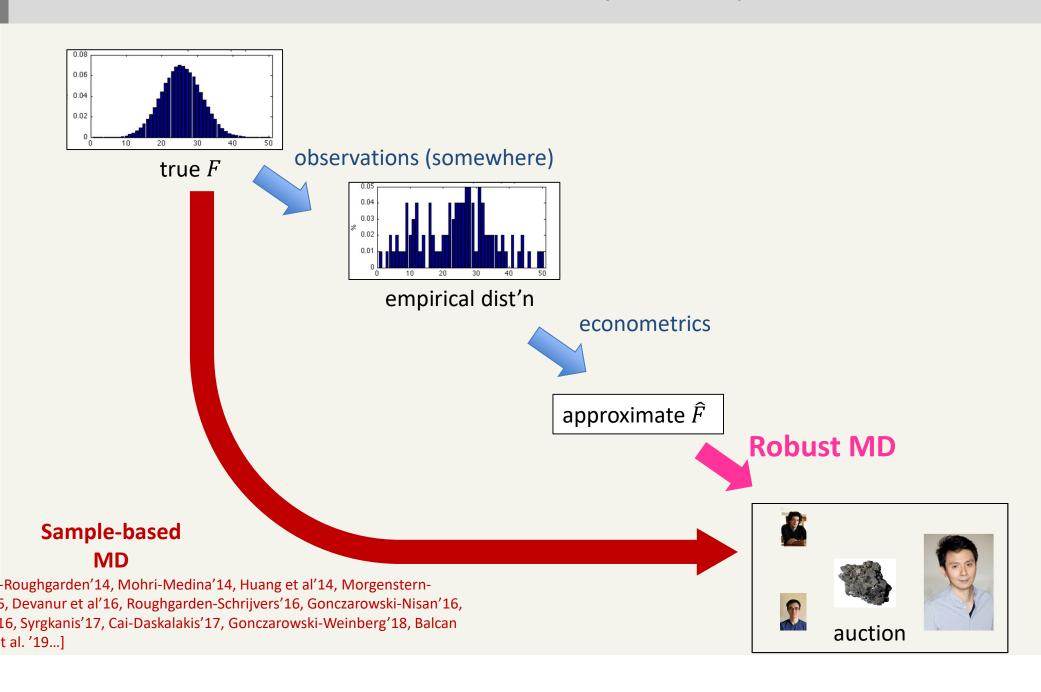
 v_n

- How to sell an item to optimize revenue?
- [Myerson'81]: When v_1, \dots, v_n are i.i.d. $\sim F$ optimal auction is second price auction with reserve price $p^* \in \arg\max\{z \cdot \left(1 F(z)\right)\}$.
 - $-\,$ similar characterizations of optimal auction if the v_i 's are just independent
- Workhorse in theory and practice of auctions.



- Where exactly does the prior F come from?
 - A: from market research or observation of bidder behavior in se
 the same kind of items in some prior auction + econometric ana
- Hmmm, so our best bet is that we know $\hat{F} \approx F$
- Using \widehat{F} instead of F is usually a bad idea
 - overfitting to details of \widehat{F}
- What to do?





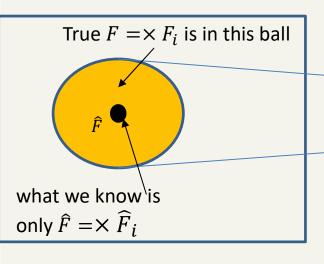
Robust Mechanism Design

Robust Mechanism Design - One-Item Many-Bidde

Ig: n bidders, 1 item, independent values drawn from $F = F_1 \times \cdots \times F_n$, $\forall i$ know \widehat{F}_i such that $d(\widehat{F}_i)$ **Goal:** given \widehat{F}_1 , ..., \widehat{F}_n and with no knowledge of F_1 , ..., F_n , find mechanism \mathcal{M}_R such that:

$$\operatorname{Rev}_{\mathcal{M}_{R}}(\times_{i} F_{i}) \geq \operatorname{OPT}(\times_{i} F_{i}) - \operatorname{err}(\epsilon, n)$$

where $\operatorname{err}(\epsilon, n) \to 0$ as $\epsilon \to 0$.



Distribution

Exists an approx optimal Mechanism for all

A priori unclear if such \mathcal{M}_R exists.

Mechanism

 \mathcal{M}_R

Robust Mechanism Design – One-Item Many-Bidde

ig: n bidders 1 item, values drawn from $F=F_1 imes\cdots imes F_n$ for all i, know \widehat{F}_i such that $\mathrm{d}(\widehat{F}_i,F_i)\leq \epsilon$ given $\hat{F}_1, \dots, \hat{F}_n$ and with no knowledge of F_1, \dots, F_n , find mechanism \mathcal{M}_R such that:

$$\operatorname{Rev}_{\mathcal{M}_{R}}(\times_{i} F_{i}) \geq \operatorname{OPT}(\times_{i} F_{i}) - \operatorname{err}(\epsilon, n)$$

where $\operatorname{err}(\epsilon, n) \to 0$ as $\epsilon \to 0$.

tle-Cai-Daskalakis EC'20]:

Individual Rationality (IR): the buyer has nonnegative utility if report truthfully

Dominant Strategy Incentive Compatible (DSIC):

reporting truthfully is a dominant strategy

Distance *d* $\text{Rev}(\mathcal{M}_R, F) \geq \text{UP}$ $|OPT(F) - OPT(F)| \le O(n\epsilon)$ Kolmogorov \mathcal{M}_R is IR and DSIC

Lévy same same

$$F(F,G) = \sup |F(x) - G(x)|$$

$$d_L(F,G) = \inf \{ \varepsilon > 0 : F(x-\varepsilon) - \varepsilon \le G(x) \le F(x+\varepsilon) + \varepsilon, \ \forall x \in G(x) \le F(x+\varepsilon) + \varepsilon \}$$

retzky-Kiefer-Wolfowitz Inequality]: With prob. $1-\delta$, the empirical distribution

 $O(\frac{\log^{-\delta}}{\epsilon^2})$ samples is within ϵ in Kolmogorov distance to the original one.

minance.

Multi-Dim Revenue Maximization

:

how should I auction seats in all Hong Kong restaurants?

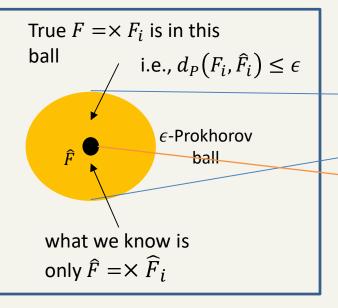
- characterization of revenue optimal mechanism much more challenging and no general characterization is known. [Rochet'85], [Laffont-Maskin-Rochet'87], [McAfee-McMillan'88], [Wilson'93], [Armstrong'96], [Rochet-Chone'98], [Armstrong'99], [Zheng'00], [Basov'01], [Kazumori'01], [Thanassoulis'04], [Vincent-Manelli '06,'07], [Figalli-Kim-McCann'10], [Pavlov'11], [Hart-Nisan'14], [Hart-Reny'15], [Daskalakis-Deckelbaum-Tzamos '17], [Frongillo-Kash '16] ...
- Lots of recent progress on various fronts (characterizations, simple-vs-optimal results,...)

Example: additive valuation, $t=(t_1,\ldots,t_m)$, $x=(x_1,\ldots,x_m)$ and $v_i(t;x)=\sum_{i\in[m]}t_ix_i$

neral Setting: n bidders, multi-dim ty \triangleright

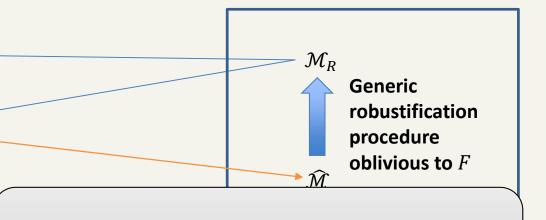
$$u_i(t; x, p) = v_i(t; x) - p$$

 $v_i(t;x) \in [0,1]$, 1-Lipschitz w.r.t. t in ℓ_1 for every allocation x.



Distributions

istness holds for **arbitrary mechanism**



Bayesian Incentive Compatible (BIC): reporting truthfully is a Bayes-Nash equilibrium

stle-Cai-Daskalakis EC'20]: given a mechanism $\widehat{\mathcal{M}}$ BIC and IR w.r.t. \widehat{F} , can turn it into robust \mathcal{M}_R suor all F in the ϵ -ball: \mathcal{M}_R is $\operatorname{appx}(\epsilon,n,m)$ - BIC, exactly-IR, and $\operatorname{Rev}_{\mathcal{M}_R}(F) \geq \operatorname{Rev}_{\widehat{\mathcal{M}}}(\widehat{F}) - \operatorname{err}(\epsilon,n,m)$ mplies that $\operatorname{OPT}(F) \approx \operatorname{OPT}(\widehat{F})$, so if $\widehat{\mathcal{M}}$ is approx. optimal for \widehat{F} , \mathcal{M}_R is approx. optimal for F.

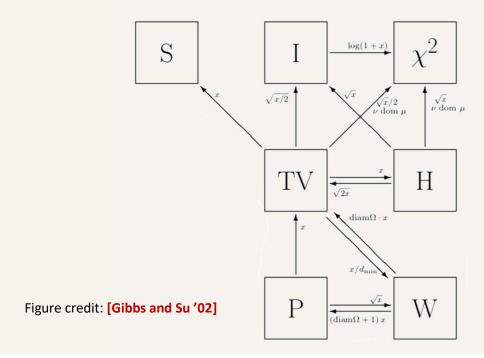
Prokohorov Distance

☐ Prokhorov Distance:

- Widely used in robust statistical decision theory [Huber '81, Hampel et al. '86].
- Strassen's Characterization of the Prokhorov distance:

$$d_P(F, \hat{F}) \le \varepsilon \iff \exists \text{ coupling } \gamma(x, y) \text{ of } F, \hat{F} \text{ s.t. } \Pr_{\gamma}[\|x - y\| > \varepsilon] \le \varepsilon$$

• i.e. can couple F, \hat{F} so that, w/ probability $\geq 1 - \varepsilon$, samples are within ε



Mechanism Robustness & Optimal Revenue Continuity

etting: n bidders, quasi-linear utilities, independent multi-dim types in \mathbb{R}^m drawn from $= F_1 \times \cdots \times F_n$, for all i, know \hat{F}_i such that $d_P(\hat{F}_i, F_i) \leq \epsilon$

Brustle-Cai-Daskalakis EC'20]: Given $\widehat{\mathcal{M}}$ that is BIC and IR w.r.t. \widehat{F} construct robust \mathcal{M}_R s.t.

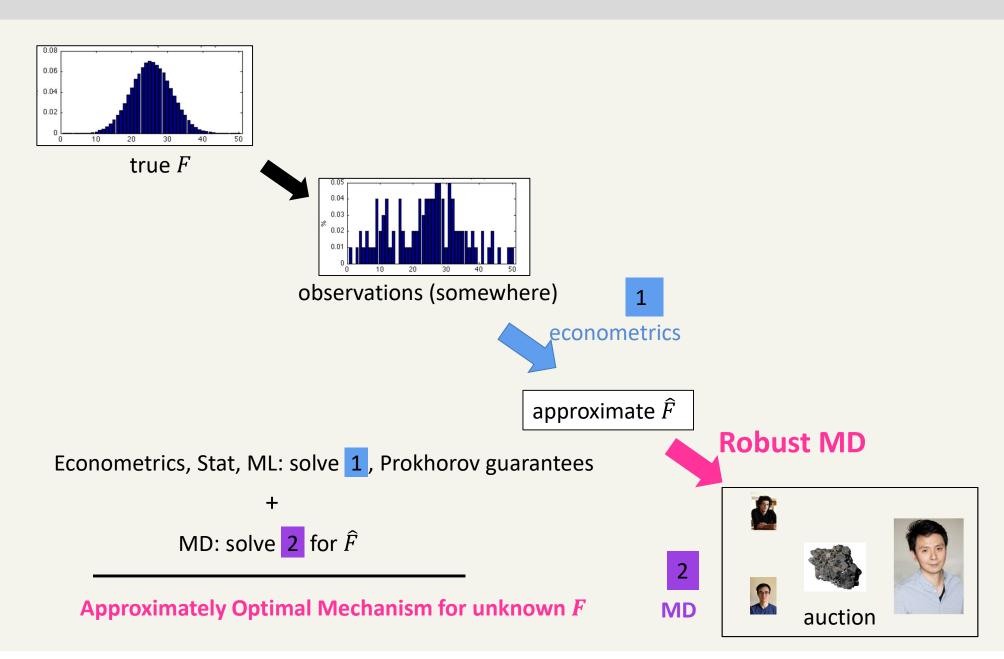
Robustness	Continuity
$\operatorname{Rev}(\mathcal{M}_R, F) \geq \operatorname{Rev}(\widehat{\mathcal{M}}, \widehat{F}) - O(n\eta + nm\sqrt{\eta})$ \mathcal{M}_R is IR and η -BIC $(\eta = nm\epsilon + m\sqrt{n\epsilon})$	$\left OPT(\widehat{F}) - OPT(F) \right \le O(n\eta + nm\sqrt{\eta})$

orollary: Given $\widehat{\mathcal{M}}$ that is the revenue-optimal BIC and IR w.r.t. \widehat{F} , can construct \mathcal{M}_R s.t. $\mathrm{Rev}(\mathcal{M}_R,F) \geq \mathrm{OPT}(F) - O(n\eta + nm\sqrt{\eta})$

uestion: Can we make \mathcal{M}_R be **exactly BIC** and appx-optimal for all dist'ns in the ball?

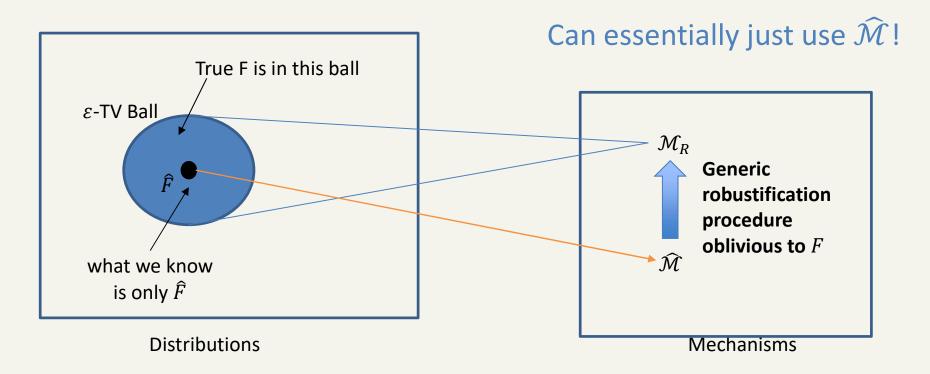
Yes if m or n=1; No for multiple items multiple bidders (follows from [Lopomo-Rigotti-Shanno+[Tang-Wang'16]).

Corollary: Modularity (1+1=3)



Proof Vignettes of Robustness

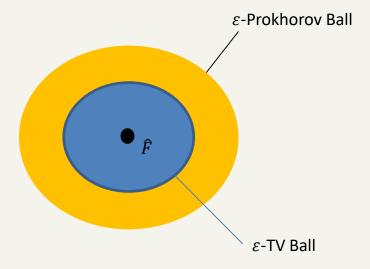
TV-Robustness



Total variation distance:
$$d_{TV}(F, \hat{F}) = \sup_{event \ \mathcal{E}} |F(\mathcal{E}) - \hat{F}(\mathcal{E})|,$$
 $d_{TV}(F, \hat{F}) \le \varepsilon \iff \exists \text{ coupling } \gamma(x, y) \text{ of } F, \hat{F} \text{ s.t. } \Pr_{\gamma}[x \ne y] \le \varepsilon$

Prokhorov Robustness <=> TV Robustness

Prokhorov Robustness => TV Robustness



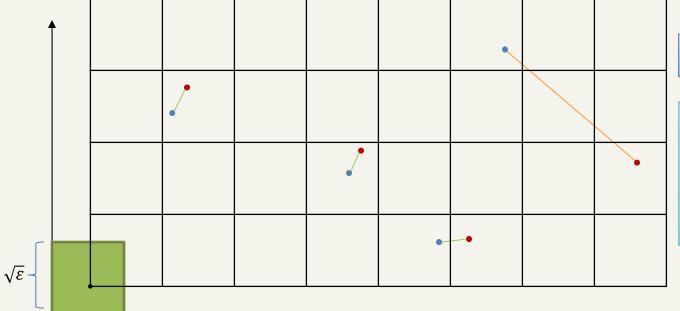
- TV Robustness => Prokhorov Robustness
 - hope a $poly(n, m, \varepsilon)$ -TV Ball contains the ε -Prokhorov Ball
 - but even the $(1-\delta)$ -TV Ball does not contain the ε -Prokhorov Ball for arbitrarily small δ .

TV Robustness => Prokhorov Robustness

• Key Idea: round the distributions down to a random grid.

Definition of the Prokhorov distance:
$$d_P(F, \hat{F}) \le \varepsilon \Leftrightarrow \exists \text{ coupling } \gamma(x, y),$$

s.t. $\Pr_{\gamma}[\|x - y\|_1 > \varepsilon] \le \varepsilon$

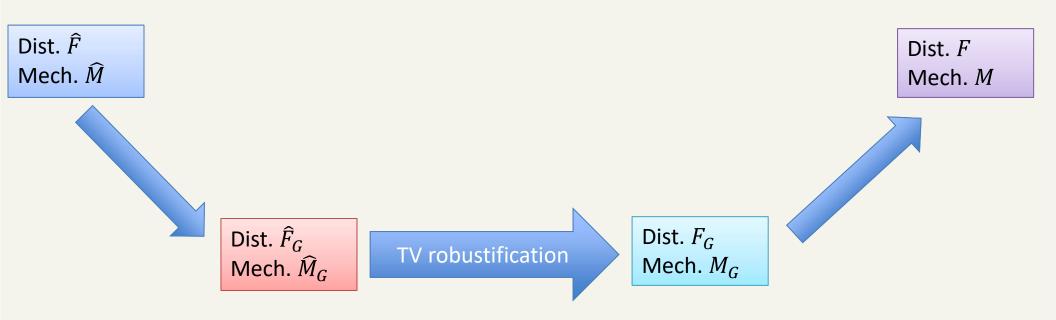


Lemma: $\mathbb{E}[d_{TV}(F_G, \hat{F}_G)] = 0$

Proof: Suppose $||x - y||_1 \le \varepsilon$ The prob. that x and y fall int different cubes is exactly:

$$\sum_{i=1}^{m} \frac{|x_i - y_i|}{\sqrt{\varepsilon}} \le \sqrt{\varepsilon}.$$

Prokhorov Robustification



Sample a random grid G.

Create \widehat{F}_G and \widehat{M}_G that is appx-BIC and IR wrt \widehat{F}_G .

- For any t_i , sample b_i from \widehat{F} conditioned on being in the right box, i.e., b_i will be rounded to be in grid G .
- Feed (b_1, \dots, b_n) to M.
- Use TV robustification to obtain M_G that is appx-BIC and IR wrt F_G .
- Create M that is appx-BIC and IR wrt F.
- $-\hspace{0.1cm}$ For any t_{i} , rounded to grid G , and report the rounded type to M_{G} .

Corollary: Modularity (1+1=3)



Robust MD meets ML

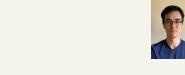
Example 1: Mechanism Design meets

Topic Models

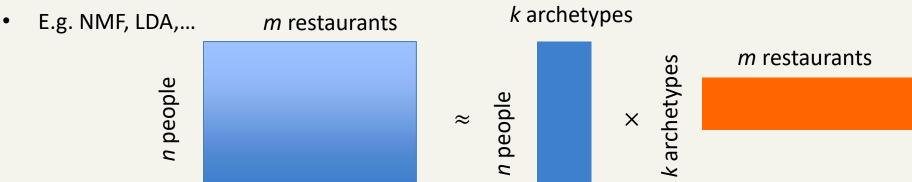
:

auction seats in all Athens restaurants?

how should I

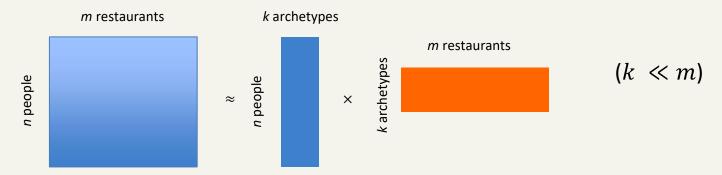


- Topic Models: practically useful (family of) statistical models for high-dimensional data with structure.
- Basic premise: high-dimensional vector $t \in \mathbb{R}^m$ (e.g. m=#restaurants) generated by
 - first sampling a mixture over k archetypes (e.g. food connoisseurs)
 - then outputting m-dimensional vector by combining -- in some way dependent on sampled mixture dimensional samples corresponding to each archetype (e.g. preferences of food connoisseurs for restaurants)



Example 1: Mechanism Design meets Topic Models (cont'd)

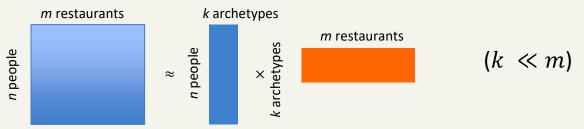
• Challenge: Suppose topic model is good approximation of high-dimensional type distribution F; design good mechanism for F.



- *Issue*: topic model is only an approximation of reality (true types are close to manifold spanned by topic model samples)
- Extra challenge: impractical to ask bidders to communicate their m-dimensional type
 - how about asking them about their mixture over archetypes?
 - Issue 2: bidders don't know anything about archetypes!

Example 1: Mechanism Design meets Topic Models (cont'd)

• Challenge 1: Suppose topic model is good approximation of high-dimensional type distribution F; design good mechanism for F.



- Challenge 2: impractical to ask bidders to communicate their m-dimensional type, but bidders don't know anything about archetypes!
- 1+1=3 approach:
 - step 1 (ML): ask ML team to learn topic model \widehat{F} approximating true F in Prokhorov
 - step 2 (MD): ask MD team to design mechanism $\widehat{\mathcal{M}}$ for topic model \widehat{F}
 - done right, effective dimensionality is k=#archetypes (rather than m=#restaurants)
 - e.g. (fake) $\widehat{\mathcal{M}}$ can ask bidders for their mixture over archetypes rather than their m-dimensional types
 - step 3 (Robust MD): massage $\widehat{\mathcal{M}}$ into \mathcal{M}_R attaining approximately same revenue on F as $\widehat{\mathcal{M}}$ on \widehat{F}
 - if $\widehat{\mathcal{M}}$ is α -optimal for \widehat{F} , then \mathcal{M}_R is $\alpha(ish)$ -optimal for F
 - \mathcal{M}_R can be made to ask sparse queries to bidders (e.g. "how much do you like this restaurant?" as opposed to "tell us how you like each restaurant in Hong Kong"). # of queries scales mildly in k and independent of m, under natural assumptions.

Example 2: Mechanism Design meets Bayesnets and MRFs

sample Based MD: n bidders, quasi-linear utilities, independent types drawn from $F = F_1 \times \cdots \times F_n$, for all i, F_i is over \mathbb{R}^m , and we are given **sample access** to F_i .

arge body of literature: [Elkind'07, Cole-Roughgarden'14, Mohri-Medina'14, Huang et al'14, Morgenstern-Roughgarden'15, Devanur et al'16, Roughgarden-Schrijvers'16, Gonczarowski-Nisan'16, Goldner-Karlin'16, Syrgkanis'17, Cai-Daskalakis'17, Gonczarowski-Weinberg'18, Balcan et al. '18, Guo et al. '19...]

- Many considers m=1
- General m, either requires item-independence or only learn the optimal mechanism in some specific class.

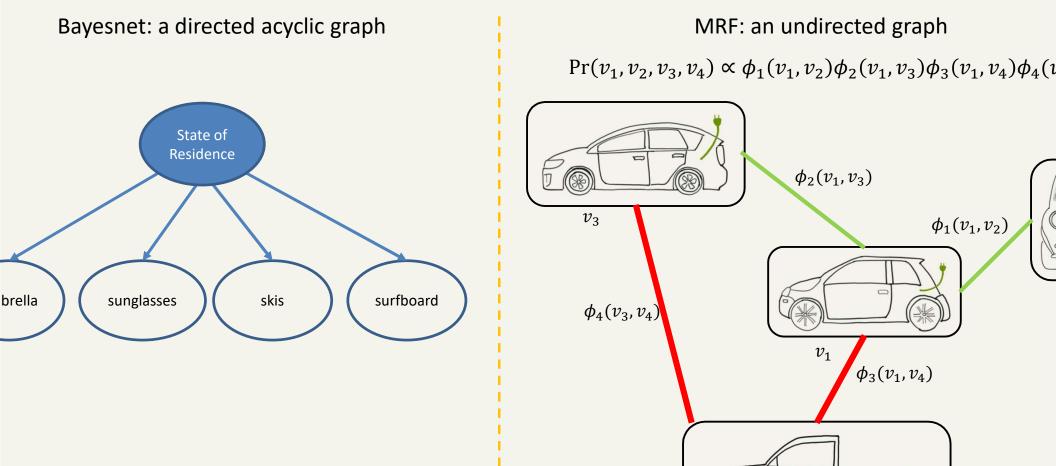
Dughmi et al'14]: if distributions F_i are **arbitrarily dependent** over \mathbb{R}^m then exponentially many samples in a secessary, even to attain constant-factor approximation to optimal revenue

- lacktriangle holds for the simple case of one unit demand bidder, m items
- he instance in [Dughmi et al'14] requires strong dependence.
- Improve sample complexity that degrades gracefully with the degree of dependence?

We use two most prominent graphical models to capture dependence: Bayesian Networks (Bayesnets) and Nandom Fields (MRFs).

- Note that they are fully general if the graphs on which they are defined are sufficiently dense.
- Natural parameters of these models: maximum size of hyperedges in an MRF and largest indegree in a Bayesnet.
- Allow latent variables, i.e. unobserved variables in the distribution.

Example 2: Mechanism Design meets Bayesnets and MRFs (cont'd)



 v_4

Example 2: Mechanism Design meets Bayesnets and MRFs (cont'd)

- 1+1=3 approach:
 - Step 1 (ML): learn MRF/Bayesnet \hat{F} approximating true F in Prokhorov
 - Step 2 (MD): design good mechanism $\widehat{\mathcal{M}}$ for model \widehat{F}
 - Step 3 (Robust MD): massage $\widehat{\mathcal{M}}$ into a good mechanism \mathcal{M}_R for F
- Sample complexity for learning an ϵ -optimal and η -BIC mechanism:

Setting	Sample Complexity	Prior Result		
Product Measure	$\operatorname{poly}\left(n,m,\frac{1}{\epsilon},\frac{1}{\eta}\right)$	[Gonczarowski-Weinl	berg '18]	
MRF (<i>d</i> =max clique size)	$\operatorname{poly}\left(n, m^d, \Sigma ^d, \frac{1}{\epsilon}, \frac{1}{n}\right)$	unknown		
Bayesnet (<i>d</i> =max indegree)	$\operatorname{poly}\left(n,d,m, \Sigma ^d,\frac{1}{\epsilon},\frac{1}{\eta}\right)$		Exponential dependence on d is unavoidable as $d=\Omega(m)$ allows full dependence	
n =#bidders, m =#items, Σ = effective value range		[Dughmi et al'14]		

Conclusion

- Main Result: Max-Min Mechanism Design Robustness Under Prokhorov in multidimensional settings.
- A new modular approach to MD
 - Learn model \hat{F} to within some distance; Prokhorov is good.
 - Find good mechanism $\widehat{\mathcal{M}}$ for \widehat{F} .
 - Massage $\widehat{\mathcal{M}}$ to \mathcal{M}_R that is robust to the model misspecification.
- I think we are at a turning point for MD + ML
 - we have a modular framework that allows disentangling the two.
 - lots of opportunities in ML meets MD space.

Thank you!